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SUMMARY 

One of the main factors limiting the widespread use of computational fluid dynamics codes for engineering 
design is their very large requirements both in terms of computer memory and CPU time. Distributed 
memory parallel computers offer both the potential for a dramatic improvement in cost/performance over 
conventional supercomputers and the scalability to large numbers of processors that is required if 
performance beyond that of current supercomputers is to be achieved. As part of an evaluation to explore 
the potential of such machines for computational fluid mechanics applications, a concurrent algorithm for 
the solution of the Navier-Stokes equations has been developed and demonstrated on a hypercube parallel 
computer. The algorithm is based on a domain decomposition of a well-established serial pressure 
correction algorithm. 

The algorithm is demonstrated on both a 32-node scalar and eight-node vector Intel iPSC/2 for 
complicated two-dimensional laminar and turbulent flow problems with different grid sizes and numbers of 
processors. Speed-ups relative to a single processor of 12.9 with 16 processors and 20.2 with 32 processors 
are achieved on a scalar iPSC/2, demonstrating the parallel efficiency of the algorithm. Measured 
performance on a 32-node scalar iPSC/2 exceeds one-sixth that of a Cray X-MP running the original serial 
algorithm. The performance of the aigorithm on an eight-node vector iPSC/2 exceeds that of the larger scalar 
hypercube and is about one-fifth that of the Cray X-MP. With cost/performance more than 10 times better 
than the Cray, these results dramatically show the cost effectiveness of vector hypercubes for this class of fluid 
mechanics algorithm. 
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1.  INTRODUCTION 

One of the main factors limiting the widespread use of computational fluid dynamics codes for 
engineering design in their very large requirements both in terms of computer memory and CPU 
time. Even when present-day supercomputers are adequate to solve the problems, the high cost of 
such machines and their limited availability make their use impractical for all but a few 
government laboratories and the largest industrial companies. Many important fluid dynamics 
problems, including the simulation of the flow about a complete aircraft, the study of the effects of 
unsteady phenomena on turbine stage efficiency, the modelling of combustion instabilities and 
the direct simulation of turbulence, will require computer resources of the order of hundreds of 
hours of time on modern supercomputers and hundreds of millions of words of computer storage. 

Single-processor machines are approaching fundamental limitations on performance owing to  
limits on signal transmission speed, switching delays and other factors.' Parallel processing offers 
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the best near-term hope for greatly increased computational speeds. Recent advances in micro- 
electronics, producing such items as 1 Mbit DRAM chips and modern 32 bit microprocessors 
such as the Intel80386 and Motorola 68020 have made a whole generation of high-per- 
formance/low-cost parallel distributed memory computers available, such as the Intel iPSC, 
NCUBE and Meiko Computing Surface. Although such machines currently lack powerful 
enough processors to provide performance significantly faster than existing supercomputers, their 
distributed memory architectures are scalable up to the level of hundreds of processors, and some 
algorithms have been demonstrated to retain high parallel efficiencies up to this level.2 Since more 
and more powerful microprocessors are being developed at a remarkable rate, it seems only a 
matter of time before such machines offer performance significantly exceeding existing super- 
computers for some applications. Fox et aL3 project, on the basis of reasonable extrapolations of 
existing technology, that a distributed memory machine with lo5 processors, 1013 bits of memory 
and loi4 flops performance may be possible within a few years. 

There is a great deal of interest in using parallel computation for computational fluid dynamics 
problems, as evidenced by a number of recent conference sessions devoted to the area.4*5 It is 
beyond the scope of this paper to review all of the literature-this will be attempted in 
Reference 6. 

In an earlier paper7 a parallel version of a well-known pressure correction algorithm for the 
solution of incompressible viscous fluid flows was described by the present author and demon- 
strated on a 16-node Intel iPSC/1 scalar hypercube. In this work that algorithm has been 
extended and implemented on a second-generation 32-node Intel iPSC/2 scalar hypercube and 
on an eight-node Intel iPSC/2VX vector hypercube. On both new machines the ratio of the 
computational speed of the processors to the communication speed of the machine is significantly 
increased compared to the older iPSC/l, which puts even a higher premium on achieving efficient 
communication. In addition, the vector machine demands close attention to issues of vec- 
torization to ensure that the potential speed of the vector processors is realized. 

2. OVERVIEW O F  PARALLEL ALGORITHM 

The numerical algorithm developed here for execution on a distributed memory parallel 
processor is a direct extension of the serial incompressible flow algorithm described in References 
8 and 9. An initial parallel implementation of this algorithm was described in detail in 
Reference 7. Only a brief outline of the original implementation is given here, with the emphasis 
instead on new developments and issues of importance to vector concurrent computation. 

The algorithm developed here is capable of solving steady two-dimensional (planar or 
axisymmetric) laminar and turbulent flows. For clarity, a planar situation is described. Laminar 
flows are described by the equations for conservation of mass, x-momentum and y-momentum, 
along with appropriate boundary conditions. For turbulent flows the standard k--E turbulence 
model is used, along with the wall function treatment for the near-wall regions.’O 

The governing conservation equations can be written in Cartesian co-ordinates for a general 
dependent variable 4 in the following form: 

Here r is the effective diffusion coefficient and R is the source term for the variable 4, which can 
represent velocity components, temperature, turbulence variables, etc. The equations are trans- 
formed by introducing new independent variable and q. Equation (1) changes according to the 
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general transformation ( = t(x, y), q =q(x ,  y) and can be rewritten in (5,  q) co-ordinates as follows: 

(2) 
Here U and V are the contravariant velocity components, ql, q2 and q3 are metric terms arising 
from the co-ordinate transformation, J is the Jacobian of the transformation and S ( 5 ,  q) is the 
source term in (5 ,  q) co-ordinates. The reader is referred to References 8 and 9 for complete details. 

Discretization of equation (2) leads to the following general form of the conservation equation 
for the variable 4: 

The subscripts P, E, W, N and S refer to the grid point at the centre of the control volume and the 
four neighbouring grid points respectively. The term (S& includes the original source term in the 
equation plus the additional terms that cannot be approximated by the values of 4 at the five grid 
points. A, staggered grid is used to compute the velocity components, as in the standard practice 
in finite volume procedures.' ' For simplicity, the combined convection and diffusion fluxes across 
the control volume surfaces are computed using the so-called hybrid scheme." 

The coupled system of momentum and continuity equations is solved by a pressure correction 
method similar to that described in Reference 11. The momentum equations are first solved, for a 
given pressure distribution p*, to yield a tentative velocity field u*, u*. An equation for updating 
the pressure is obtained via manipulation of the discrete forms of the momentum and continuity 
equations. This equation is solved, the pressure is updated and the velocity components are 
corrected to satisfy continuity, completing one global iteration. Owing to the non-linearity of the 
problem, a number of a global iterations are required to obtain a converged solution. 

Effective implementation of this algorithm on a distributed memory parallel computer requires 
the satisfactory resolution of three major computational issues, namely (i) load balancing, 
(ii) minimization of communications costs and (iii) the development of an efficient concurrent 
algorithm. The basis of the parallel implementation adopted here is the domain decomposition 
method." The solution domain is divided up into a number of overlapping subdomains and each 
subdomain is assigned to a different processor. Overlapping is necessary so that each interior grid 
point is treated as an interior point in at least one subdomain. In parallel, the coefficients of the 
equation under consideration are calculated in each subdomain and an iterative solution is 
obtained in each region to some reasonable level of convergence. The boundary values are then 
exchanged with the neighboring subdomains and the solution is iterated further. When some 
suitable global convergence criterion is satisfied, the solutions on each subdomain can be 
assembled into the complete solution for the entire domain. 

Domain decomposition has many advantages for this situation. Since the work per grid point is 
roughly equal, assigning the same number of grid points to each subdomain assures reasonable 
load balancing. A geometrical decomposition has the advantage that metric information arising 
from the co-ordinate transformation needs only be stored in the local memory of the processor 
that is assigned to that region of the domain and does not need to be communicated between 
processors. Since this metric information makes up most of the required storage for the code, the 
total memory of the ensemble of processors can be used effectively. 

In this work the decomposition of the domain is done by strips. A one-dimensional stripwise 
decomposition leads to the smallest number of messages passed, making it attractive for machines 
such as the hypercube where high message latency is the dominant cost for short messages. The 
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drawback of a stripwise decomposition is that the number of processors that can be used is 
limited to the maximum number of grid cells in any one direction; consequently it cannot be 
scaled to as many processors as a multidimensional decomposition. Nearest-neighbour com- 
munication is ensured by mapping the hypercube to the required linear array through the use of 
binary reflected Gray codes.13 Each processor is then a nearest neighbour to the two processors 
that are handling the two adjacent subdomains. 

The parallel algorithm adopts the same equation-by-equation solution procedure as the 
original serial algorithm, solving the governing equations in the following order: x-momentum, 
y-momentum and pressure correction (followed by turbulent energy and turbulent dissipation for 
turbulent flows). This equation-by-equation procedure was selected for several reasons. First, it 
reduces to the original algorithm for a single processor. Thus comparison of the speed-up 
obtained with p processors over p subdomains is made relative to the original algorithm on a 
single processor over the entire solution domain, which reflects a comparison of the parallel 
algorithm with the best serial algorithm in the sense of Sk as defined by Ortega and Voigt.14 
Secondly, if converged solutions are obtained for each equation, then the overall rate of 
convergence of the algorithm will be the same as for the serial algorithm if each equation is also 
solved to convergence at each stage. Although this is not the usual practice (since the coefficients 
are only tentative, it is more efficient to solve only loosely to convergence at each stage), this 
similarity ensures that the parallel algorithm will show comparable convergence behaviour to the 
serial algorithm, which has proved to converge well for a large variety of problems. 

At each stage the linearized equations for each variable are solved by a suitable iterative 
procedure such as a line-by-line TDMA." In the earlier work7 it was found that the subdomain 
solution of the pressure correction equation on multiple processors converged more slowly than 
the original procedure on a single processor, leading to an increase in the required number of 
iterations for convergence. This was found to be the critical factor in reducing the parallel 
efficiency of the parallel algorithm. The use of a block correction scheme to accelerate the 
convergence of the pressure correction equation was found to make the overall convergence rate 
of the algorithm nearly independent of the number of processors, at the cost of requiring global 
communication between the processors during the block correction step. As a result of the need 
for block correction, and its slower convergence, the solution of the pressure correction equation 
takes up about 50% of the total computational effort. 

3. NEW DEVELOPMENTS FOR VECTOR CONCURRENT COMPUTATION 

The ultimate goal of this effort is to develop a parallel vectorizable CFD algorithm that will scale 
efficiently to distributed memory machines with large numbers of vector processors. Consequen- 
tly, high levels of vectorization and parallel efficiency are of paramount concern. 

The Intel iPSC2/VX machine was chosen for this study because it is a commercially available 
vector hypercube. The machine has an attached vector processor rated at 20 Mflops single 
precision paired with each 80386/30387-based scalar processor. The machine can be configured 
with up to 128 vector processors, although only eight were available in the machine used in this 
study. A source code precompiler called VAST-215 vectorizes DO loops in FORTRAN pro- 
grammes and creates code for the vector processor. The vector code produced is in the form of 
calls to a subroutine library of vector arithmetic operations that execute on the vector processor. 
VAST-2 was found to be easy to use and to generate good, although not optimal, vector code. 

Figure 1 shows typical benchmarked performance of the vector processor on a SAXPY loop 
(SAXPY computes aX + Y in single precision) for different vector lengths. Several characteristics 
of the vector performance are of significant interest. 
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Figure 1. Typical vector processor performance on Intel iPSC/ZVX 

1. Peak measured performance of the vector processor was 5.1 Mflops, compared to 
017 Mflops for the 80386/80387 scalar processor. This factor of 30 in floating point speed 
available from the vector processor demonstrates the importance of having a vectorizable 
algorithm for this machine. However, this significant increase in floating point performance 
will place even more of a burden on the communication system, making efficient communi- 
cation even more critical if high parallel efficiency is to be achieved with large numbers of 
vector processors. 

2. The vector length required to reach one-half of the peak performance (the so-called half- 
length) is of the order of 50 words, which is significantly longer than that for more 
sophisticated vector processors such as those used in the Cray, where the half-length is 
typically 10-20 words. The consequence of this is that fairly long vector lengths are needed to 
get good performance out of the vector processors. 

3. The performance curve shows two different regions of performance. For short vectors the 
performance is linearly proportional to the vector length, while for long vectors the vector 
performance is virtually independent of the vector length as the asymptotic rate is ap- 
proached. In the domain decomposition technique used here, doubling the number of 
processors essentially halves the number of grid points assigned to each processor. If the 
resulting vector lengths are also halved and become short enough so that the vector 
processor performance is also halved, then no speed-up will occur. To ensure the scalability 
of the algorithm to large numbers of vector processors, it is necessary to ensure that the 
vector lengths are either independent of the number of processors or long enough so that 
halving the vector length does not significantly degrade the vector performance. 

The original serial 2D fluids code was written using two-dimensional array storage for the 
various coefficients and variables. A typical variable q5 was stored as PHI (I, J). A typical code 
segment to compute q5 over the interior control volumes in a subdomain appeared in the form: 

DO10J = 2 , N J - 1  
DO201 = 2 , N I  - 1  
PHI (I, J )  = stuff 

20 CONTINUE 
10 CONTINUE 
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Here NI is the number of grid points in the x-direction for the subdomain of interest and NJ is the 
number of grid points in the y-direction. On a scalar machine it is conventional practice to put the 
loop which increments the leading index of the array as the innermost loop, since this leads to the 
fastest memory access. However, note that for the stripwise decomposition used here, NJ is 
independent of the number of processors, but NI is inversely proportional to the number of 
processors and consequently decreases as the number of processors is increased. Since on a vector 
machine only the innermost DO loop in a nested set can be vectorized, this leads to shorter and 
shorter vector lengths as the number of processors is increased. Inverting the order of the loops, to 
place J in the inner loop, makes the vector length independent of the number of processors and 
will lead to longer vector lengths for large number of processors. 

The use of one-dimensional data structures can lead to even longer vector lengths, since a single 
loop can then run over all of the grid points in the subdomain. With one-dimensional data 
storage the same loop appears as 

DO 10 IJ = IJS, IJE 
PHI (IJ) = stuff 

10 CONTINUE 

The composite index I J can be interpreted as I J = ( I  - 1 ) * N J + J so that IJS = NJ + 2 and 
I J E = N I * N J - N J - 1. The only difference between this loop and the previous loop is that 
meaningless calculations are done for some boundary points along the top and bottom surfaces. If 
these values are not used in the code, there is no difficulty; if they are incorrect or lead to floating 
point exceptions that cause later problems, they can be overwritten in a small subsequent loop. 
Note that the possibility of floating point exceptions requires that the code execution does not 
terminate in the event of an exception, in accordance with the IEEE floating point standard. 

The line-by-line TDMA used in the original work is a good choice on a scalar machine, but 
since the TDMA algorithm does not vectorize well, is not particularly attractive on a vector 
machine. Point solvers such as Jacobi or Gauss-Seidel have proven to be attractive alternatives 
on a vector machine owing to their excellent vectorizability. Consider the following point 
symmetric Gauss-Seidel algorithm consisting of a forward and backward pass. The forward pass 
appears as 

DO101 =2 ,N l  - 1  
DOlOJ = 2, NJ - 1 

1 
a P  

# i j = -  ( a E 4 i * + l ,  j + % & i - l ,  j + a N 4 i f j + l + % 4 i ,  j - 1  +(sb>p> (4) 

10 CONTINUE 

Here the starred quantities refer to values that are taken from the previous iteration; unstarred 
quantities refer to the recently updated values. Note that the distinction between whether an 
updated value or an old value is used comes from the path that is followed to update 4. In the 
backward pass the visiting order of the points is reversed. 

On a vector machine, if vectorization is forced by putting a compiler directive on the innermost 
loop, all of the values in a particular column are calculated simultaneously and the forward pass 
appears as 

1 
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The difference between this and the scalar calculation is that old values of (bi, j -  are used in the 
vectorized calculation rather than the recently updated values. 

If the code was rewritten with a single loop running over all of the interior points and a 
compiler directive was used to force vectorization, then the forward pass would appear as 

1 
UP 

(bij=-(aE(bi*+l,j+a,~~-l,j+a,~itj+l+~(b,!:j-1 +(S@)p). (6)  

The iterative method then reverts to a point Jacobi scheme. For convection-dominated problems, 
point Jacobi will converge much more slowly than a corresponding Gauss-Seidel scheme (note 
for a 1 D convection-dominated problem that Gauss-Seidel converges immediately). For a 
diffusion-dominated problem the convergence rate of point Jacobi is roughly half that of 
Gauss-Seidel. Consequently the use of the Jacobi scheme is not attractive since the reduction in 
convergence rate more than offsets the increased floating point speed of the vectorized loop. The 
iterative procedure represented by equation (5 )  appears to be the best compromise for the vector 
machine. 

As mentioned earlier, the increased speed of the vector processors makes efficient communi- 
cation even more critical than before. In the earlier work the global communication required by 
the block correction scheme was done via spanning trees. Each processor calculated its contribu- 
tion to the block correction coefficients and these contributions were then passed to a root 
processor via a spanning tree. The root processor then computed the corrections while the other 
processors sat idle, and then broadcast the results of all processors via another spanning tree. In 
this work, the global communication required by the block correction was done by a global 
exchange as described in Reference 16. The contributions of each processor are globally ex- 
changed with all of the other processors, so that each processor memory ultimately contains all of 
the coefficients. Each processor can then independently compute the corrections, eliminating the 
need for the final broadcast step. This reduces the time required for communication, which 
dominates the time required by the block correction, by almost a factor of two. 

Owing to the staggered nature of the grid used in the calculation, it is sometimes necessary to 
pass the values from two adjacent columns of grid cells to a neighbouring processor rather than 
just one. The use of higher-order differencing schemes will also require the passing of multiple 
columns of values. The use of a 1D data structure proves helpful here, since such a message can be 
passed simply by prescribing the starting address of the message to be PHI ( I  J S), the length of 
the message to be 2*NJ and using appropriate values of IJS at both the sending and receiving 
ends. This avoids the time-consuming bother of packing two columns of a two-dimensional array 
into a one-dimensional message vector and then having to unpack it upon receipt. The time 
required for packing and unpacking messages can be substantial for large numbers of processors, 
so this is an important time saving. 

4. ESTIMATION OF PARALLEL EFFICIENCY 

In this work the parallel efficiency of the algorithm is determined for problems of fixed size while 
the number of processors is varied. The parallel efficiency E is defined as 

E =  TIIPT,, (7) 
where Tl is the total execution time on a single processor, p is the number of processors and T, is 
the total execution time on p processors. Direct measurement of the efficiency requires timing of 
the problem on a single processor, which is not always possible for large problems because the 
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node memory on a single processor is very limited. On the Intel iPSC2/VX used in this study, 
each scalar processor had only 4 Mbytes of memory and each vector processor had only 1 Mbyte 
of memory. When the vector processors are used, the default procedure is to load to programme 
data into the 1 Mbyte vector memory since it is directly addressable from both the scalar and 
vector CPUs. The vector processor requires all vector operands to reside in the vector memory, so 
the additional 4 Mbytes of scalar memory cannot be conveniently used except for a small amount 
of data which is not required by the vector processor. Data can be moved back and forth between 
the scalar and vector memories, but doing so requires extensive recoding and significantly reduces 
the available performance from the vector processor. For the code developed here, the available 
memory limited the size of problem that could be solved on a single processor to about 2500 grid 
points on a single vector processor or lo000 grid points on a single scalar processor. 

Consequently the larger test problems studied here could not be run on a single vector 
processor, so the parallel efficiency of such cases had to be estimated. Gustafson et aL2 outlined a 
procedure for estimating parallel efficiency in such situations based on the notion of a hypo- 
thetical processor node with direct access to all of the memory in the machine. Their procedure 
requires accurate measurements of the time each processor spends communicating data and 
sitting idle during the calculation. For a complicated application code such as considered here, 
timing all of the communication and idle periods is a substantial task. Estimating the efficiency on 
the basis of the ratio of Mflop rates it is also difficult because of problems in counting the number 
of floating point operations in a complicated algorithm with numbers of blocks of conditional 
code. 

To avoid the need for timing all of the communication and idle periods for each processor, the 
following simpler procedure was adopted. The time required to solve the problem on one 
processor can be expressed as 

TI = ncalc tcalc, (8) 
where ncalc represents the number of floating point operations performed and tcalc is the average 
time per calculation. The time required by p processors to solve the same problem, assuming 
perfect load balancing, can be expressed as 

where tc,,, represents the time spent communicating data and sitting idle. The communication 
time can be expressed as 

where tcomml represents the time spent exchanging local data with neighbouring processors and 
tcommg represents the time spent performing global data exchanges. 

The local communication time is independent of the number of processors (for more than one 
processor) and can be expressed as 

where H ( 4 )  represents the unit step function. The time for global exchange of data scales 
logarithmically with the number of processors for the hypercube topology, so the global 
communication time can be expressed as 

tcommg = tglobal log2P- (12) 
The following expression for the efficiency is obtained after combining the previous equations and 



PARALLEL CFD ALGORITHM ON A HYPERCUBE COMPUTER 955 

consolidating the various constants 

Equations (7) and (13) contain three empirical parameters, T,, p and y ,  which may be determined 
by timing a given problem on three different numbers of processors. Unfortunately, in this work 
the largest problems run on the vector processors could only be run on four or eight processors, 
so a simple two-parameter model was needed. 

A two-parameter model can be obtained by taking suitable approximations to the logarithmic 
term and the term containing the step function in equation (13). The Taylor series expansion of 
plog p ,  taken about p = 1, gives the approximation 

plogp=p- 1 + . . . . (14) 

The step function can be approximated in an asymptotic sense by the expression (p- l)/p, which 
has the correct behaviour at p = 1 and as p-+  co. With these approximations, equation (13) can be 
written as 

The two terms in the denominator can be combined into a single term, resulting in the final 
modelled equation for the efficiency 

1 
E =  

1 +ci(p- 1 ) .  

If a timing of tp, is obtained with p1 processors and a timing oft,, is obtained with p z  processors, 
then ci is given by 

(17) .=-( P1 tPl - P2tP2 
P1tp,(Pz-l)-P2tp,(P1-1) 

and Tl is given by 

The accuracy of this empirical model was judged by comparing the predicted efficiencies with 
measured efficiencies for cases that could be run on a single processor for both scalar and vector 
nodes; in no case did the predicted efficiency vary from that measured by more than 5%. Sample 
comparisons are given in the next section. Note again that expressions with more empirical 
parameters such as equation (13) could be used in cases where it is possible to make more than 
two runs on two different numbers of processors. 

5. TEST PROBLEMS 

A series of demonstration calculations have been made on a 32-node scalar iPSC/2 at Cornell 
University and an eight-node vector iPSC/2VX loaned to the GE Research and Development 
Center by Intel Scientific Computers. The first test problem involves steady laminar flow in an 
axisymmetric afterburner configuration. This is the same test problem as was considered in the 
earlier work,’ allowing comparison of the revised parallel algorithm with the original parallel 
algorithm on the iPSC/l. The improved computational performance of the iPSC/2 allowed larger 
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Figure 2. Body-fitted grid for axisymmetric afterburner configuration (test problems 1 and 3) 
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Figure 3. Test problem 2-laminar flow in conical combustor geometry: (a) body-fitted grid; (b) computed streamlines 

grid sizes to be tested; three grid sizes of 64 x 20,96 x 40 and 96 x 96 were considered. The 96 x 40 
grid is pictured in Figure 2. The second test problem involves laminar flow in a conically shaped 
combustor geometry. This test problem was chosen because the flow is very strongly recirculating 
throughout the entire solution domain, as shown in Figure 3, which illustrates the 96 x 40 grid 
and the computed streamlines. The third test problem involves turbulent flow in the same 
afterburner configuration as in problem 1. The treatment of the turbulence requires the solution 
of the two additional equations from the k--E turbulence model for the turbulent kinetic energy 
and the turbulence energy dissipation. For reference purposes the streamlines for both the 
laminar and turbulent test cases, computed on the 96 x 96 mesh, are shown in Figure 4. 

The values for the underrelaxation factors for velocity are taken to be 0 3  and that for pressure 
to be 0.5, as in the earlier paper. The calculations done on the Cornell machine used the same line- 
by-line TDMA procedure as in the earlier work; those done on the eight-node vector machine 
used the point symmetric Gauss-Seidel procedure for both the scalar and vector calculations, to 
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Figure 4. Computed streamlines for axisymmetric afterburner configuration: (a) test problem 1 -laminar flow; (b) test 
problem 3-turbulent flow 
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Figure 5. Comparison of parallel algorithm on iPSC/l and iPSC/2 (64 x 20 grid) 

allow for a comparison of the speed-up available from the vector processors for the same code. 
One iteration of the point SSOR procedure was used for the momentum and turbulence 
equations and 10 iterations were used for the pressure correction equation for these calculations. 
All solutions were taken to be converged when the mass residual fell below 

Comparison with iPSCI1 

Figure 5 shows the speed-ups obtained for the first test problem on a 64 x 20 grid on both the 
scalar iPSC/1 and scalar iPSC/2 machines. The curve marked iPSC/Z-original represents the 
results of the original porting of the code developed in Reference 7 to the iPSC/2, making only 
those changes necessary to accommodate the new syntax of the communications calls on the 
iPSC/2 machine. With 16 processors the speed-up achieved on the newer machine was only a 
factor of 6.4, compared to the earlier factor of 12.3 on the iPSC/l. These results are evidence that 
the effective ratio tcomm/tcalc is higher in the new machine than in the old for this application. This 
suspicion was confirmed by looking at benchmark data measured by Intel.” Floating point 
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benchmarks for the 80387 show performance four to five times better than the 80287 coprocessor. 
Communication benchmarks show that the nearest-neighbour communication rates for the most 
common messages in this code (between 128 and 1024 bytes) are not significantly different 
between the iPSC/1 and iPSC/2. For a 128 byte message the iPSC/2 is only 35% faster and for a 
1024 byte message is 69% faster than the iPSC/l. The big gains in communication performance 
for the new machine come in non-nearest-neighbour communication and for very short and very 
long messages, which are not prevalent in this code. In an attempt to improve the parallel 
efficiency of the code, further streamlining of the communications calls and the elimination of all 
redundant calculations in the overlapping regions were done. These improvements brought the 
parallel efficiency back up close to what was obtained earlier on the iPSC/l, as shown by the 
curve labelled iPSC/2-revised. 

Figure 6 shows a comparison of the measured execution times for the same problem on the two 
scalar machines. The code runs two to four times faster on the iPSC/2 for the same number of 
processors. The single-processor case runs about four times faster on the iPSC/2 than on the 
iPSC/l, which is consistent with the floating point benchmarks. 
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Figure 6. Comparison of timings for scalar iPSC/l and iPSC/2 (64 x 20 grid) 
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Figure 7. Speed-up of parallel algorithm of Intel iPSC/2 (test problem 1) 
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Effect of grid size and number of processors on scalar machine performance 

Figure 7 shows the speed-ups obtained with the revised code on the 32-node scalar iPSC/2 for 
the first test problem as a function of grid size and the number of processors. As expected, the 
parallel efficiency increases as the grid is made larger. The maximum speed-up obtained was a 
factor of 20.2 with 32 processors, which is equivalent to a parallel efficiency of 63%. 

Figure 8 shows a comparison of execution times on a number of different computers for the first 
test problem computed on the 96 x 40 grid. The original serial code was run on VAX minicompu- 
ters; the Cray code was a version significantly modified to vectorize efficiently (this represents the 
version used within GE for production purposes). With one processor the iPSC/2 is equivalent to 
one processor in a VAX 11/782 (equivalent to a VAX 11/780). With four processors the iPSC/2 is 
equivalent to a VAX 8530 and with 32 processors the performance of the iPSC/2 is about one- 
sixth that of a single-processor Cray X-MP. 

Comparison between iPSCI2 and iPSC2I VX 

Figures 9 and 10 show both the measured and predicted efficiencies for problems 1 and 3 
respectively computed on the smallest grid. The estimated efficiencies are within 5% of the 
measured values. As expected, the efficiencies are lower for the vector machine owing to its 
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Figure 8. Timings of parallel algorithm on Intel iPSC/2--test problem 1 (96 x 40 grid) 
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Figure 9. Parallel efficiency for problem 1 (64 x 20 grid) 
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Figure 10. Parallel efficiency for problem 3 (64 x 20 grid) 
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Figure 11.  Effect of grid size on parallel efficiency for problem 1 

increased ratio of computational speed to communication speed. For this p r o k m ,  64 processors 
is a practical limit owing to the stripwise decomposition. For a 64-processor machine the 
estimated efficiencies are projected to be about 30% with scalar processors and about 10% with 
vector processors. These low efficiencies reflect the small size of the problem, since each of the 64 
processors would only calculate the solution for a single column of 20 grid cells in this instance. 

Figure 11 shows the effect of grid size on the parallel efficiency for problem 1 for both scalar 
and vector processors. As expected, the efficiency increases as the grid size is increased, and once 
again the efficiency with the vector processors is less. For the largest probem (96 x 96 grid) the 
parallel efficiency with eight vector processors is 0.67, roughly equivalent to that found earlier for 
32 scalar processors. The execution times for the scalar and vector hypercube are compared with 
a VAX minicomputer and a single-processor Cray X-MP in Figure 12. With eight processors the 
use of the vector processors led to a speed-up of 3.4 relative to the scalar processors and the 
iPSC/2VX gave about one-fifth the performance of the Cray X-MP. 

Figure 13 compares the parallel efficiency between the two laminar flow problems. The parallel 
efficiency for the second test problem, which features more strongly recirculating flow, is lower 
than for the first test problem and falls off more rapidly as the number of processors is increased. 
Figure 14 plots the ratio of the number of iterations required for convergence for a given number 
of processors versus what was required for single scalar processor. Examination of this figure 
shows that the convergence rate of the parallel algorithm shows a 25% degradation going from 
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Figure 12. Timings of parallel algorithm-problem 1,  laminar flow (96 x 96 grid) 
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Figure 14. Comparison of convergence rate between problems 1 and 2 
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Figure 15. Timings of parallel algorithm-problem 3, turbulent flow (96 x 96 grid) 

one to eight scalar processors for the second test problem, compared to only a 5% degradation 
for the first problem. This increased sensitivity to the number of processors results from the strong 
ellipticity of the flow in the second problem, which makes the subdomain solution and block 
correction less effective. Similar behaviour was noted for subdomain solution procedures in 
Reference 18. The vector algorithm shows similar behaviour but requires higher numbers of 
iterations owing to the less implicit nature of the vectorized point solver. Note that the vector 
results are normalized relative to the number of iterations required on a single scalar processor, so 
that typically the ratio would be larger than unity even with one processor. 

Figure 15 shows timings for problem 3 on both the scalar and vector iPSC/2 and a single- 
processor Cray X-MP. The eight-processor scalar iPSC/2 runs the problem in 5502 s, the eight- 
processor vector iPSC/2 in 1538 s and the Cray X-MP in 303 s. The ratio of the timings between 
the scalar and vector hypercube, and the vector hypercube and Cray are nearly identical to those 
obtained for problem 1. 

6. CONCLUDING REMARKS 

A concurrent algorithm for solving both laminar and turbulent flow problems has been 
developed and successfully demonstrated on both scalar and vector distributed memory parallel 
computers. For large two-dimensional flow simulations, parallel efficiencies are reasonably high, 
being around 65% with 32 scalar processors or eight vector processors. Results with an eight- 
node vector iPSC/2VX give one-fifth the performance of a single-processor Cray X-MP, which 
translates to more than a 10-fold improvement in cost performance. 

With larger machines, faster vector processors and faster interprocessor communication, this 
parallel algorithm has the potential to provide performance significantly faster than that of 
existing supercomputers. The next logical step is to extend this algorithm to three dimensions, 
where the problems of interest are much more computationally demanding, and run it on a 
machine such as the Intel iPSC/860, which has much faster processors that the Intel iPSC/2. 
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